
Machine Learning

Mueen Nawaz

January 3, 2015

Contents
1 Linear Regression 3

1.1 Definitions . 3
1.2 Gradient Descent . 4
1.3 Alternatives to Gradient Descent 5
1.4 Gradient Checking . 6
1.5 Matrix Derivatives . 6
1.6 Least Squares Revisited . 7
1.7 Probabilistic Interpretaion . 7
1.8 Locally Weighted Linear Regression 8
1.9 Random Tips . 8

2 Classification 9
2.1 Logistic Regression . 9
2.2 The Perceptron Learning Algorithm 10
2.3 Another way to maximize the maximum likelihood function . . . 10
2.4 Classifying into k Categories . 11

3 Generalized Linear Models 11
3.1 The Exponential Family . 11
3.2 Constructing GLMs . 11

4 The Problem of Overfitting 13
4.1 Addressing overfitting . 13
4.2 Regularization . 14
4.3 Regularized Linear Regression . 14
4.4 Regularized Logistic Regression 15

5 Generative Learning Algorithms 15
5.1 The Multivariate Normal Distribution 15
5.2 Gaussian Discriminant Analysis 16
5.3 Naive Bayes . 17

1

6 Support Vector Machines 19
6.1 Notation . 19
6.2 Functional and Geometric Margins 20
6.3 The Optimal Margin Classifier 20
6.4 Lagrange Duality . 21
6.5 Optimal Margin Classifiers . 23
6.6 Kernels . 23
6.7 Regularization and the non-separable Case 24
6.8 The Sequential Minimal Optimization (SMO) Algorithm 25
6.9 SVM & Kernel Method Examples 26

7 Support Vector Machines—Coursera Treatment 26
7.1 Kernels . 27
7.2 Choice of Kernel . 28
7.3 Logistic Regression vs SVM . 28

8 Neural Networks 29
8.1 Multiclass Classification . 30
8.2 Cost Function . 30
8.3 Backpropagation Algorithm . 30
8.4 Putting All The Pieces Together 31

9 Learning Theory 32
9.1 Definitions . 33
9.2 Finite H . 33
9.3 Infinite H . 34

10 Model Selection 35
10.1 Cross Validation . 35
10.2 Feature Selection . 36
10.3 Bayesian Statistics and Regularization 38

11 The Perceptron and Large Margin Classifiers 38

12 The k-means Clustering Algorithm 39

13 Mixtures of Gaussians and the EM Algorithm 40

14 Dimensionality Reduction 41
14.1 Motivation . 41
14.2 Principal Component Analysis 41
14.3 Principal Component Analysis Algorithm 41

2

15 Anomaly Detection 42
15.1 Algorithm . 43
15.2 Evaluating the Algorithm: . 43
15.3 Anomaly Detection vs Supervised Learning Algorithm 44
15.4 Choosing What Features to Use 44
15.5 Using the Multivariate Gaussian Distribution 44

16 Recommender Systems 45
16.1 Collaborative Filtering . 46
16.2 Find Related Items . 47
16.3 Mean Normalization . 47

17 Large Datasets 47
17.1 Stochastic Gradient . 47
17.2 Mini-Batch Gradient Descent . 48
17.3 Online Learning . 48

1 Linear Regression

1.1 Definitions
• Supervised Learning: Informally it means you gave the algorithm a
data set with the "correct" answers specified. There’s also unsupervised
learning as well as reinforcement learning.

• Regression: Predict continuous valued output.

• Notation:

– m = Number of training examples.

– x = Input—also called the input feature

– y = Output—also called the target

– (x(i), y(i)) is the i th training example.

– The full set of training examples is called the training set.

– X is the space of inputs, Y the space of outputs.

– p(y|x; θ) vs p(y|x, θ). In the former, θ is not a random variable,
it is just a parameter. In the latter, θ is a random variable, and
we’re saying "the probability of y given x and θ". The two cases are
differentiated with the use of a comma versus a semicolon.

• h is the hypothesis: It takes x as the input and computes y. Formally,
h : X 7→ Y

• Linear regression with one variable: h(x) = θ0 + θ1x. Also called
univariate linear regression.

3

• If you have multiple input variables (denoted by x(i)
j where the subscript

denotes another feature of the input), then h(x) =
∑n
i=0 θixi = ΘTx.

Note that x0 = 1 always—it was introduced for notational convenience
and is called the intercept term.

• θi’s are called the parameters, or weights.

• Want to minimize minθ0,θ1
1

2m

∑m
i=1

(
h(x(i))− y(i)

)2
. The leading fraction

is just to simplify the math later on.

• More general notation: minθ0,θ1 J(θ0, θ1) where J is the cost function.

– In our case J is the squared error function.

1.2 Gradient Descent
• Gradient Descent algorithm: θn+1

j = θnj −α ∂
∂θj

J or Θn+1 = Θn−α∇J

– α is the learning rate. It is always positive.

– It controls the step size in the direction of maximum change. Too
small and the convergence is slow. Too large and it will overshoot
and possible diverge.

– This "rule", when applied to the linear cost function, is also called the
LMS (least mean squares) update, or the Widrow-Hoff learning
rule. Note that the update is proportional to the error.

• For linear regression, the cost function is always convex. You’re guaran-
teed to hit a global minimum (if you hit one). Why?

• Batch gradient descent: Each iteration uses all the training examples.

• There is also the stochastic gradient descent. Here we update Θ every
time we come across an input x(i).

– The difference between stochastic and batch is that the latter up-
dates all the θj ’s with all the x(i)’s (i.e. each time each θj is updated,
we have to calculate over all inputs—then we calculate the new cost
function). The stochastic approach iterates over the inputs. When
it encounters an input, it updates all the parameters, and then cal-
culates the cost function. Then it moves on to the next input.

– Stochastic gradient can get closer to the minimum much more quickly
but is not guaranteed to hit a minimum—it may oscillate around it.
Why? This can be remedied by decreasing α as it approaches the
minimum.

• For the simple case of linear regression, you can always use least squares
method which is non-iterative. However, I think Andrew Ng claims that
for large data sets, gradient descent is quicker?

4

1.2.1 Feature Scaling & Normalizing

• If the θj ’s are of widely different scales (e.g. one of them is over a 1000,
and the other is between 0 and 1), you’ll have convergence issues (or slow
convergence).

• To get around this, scale all your θj ’s so that they are all around unity.

• It is also desirable to offset your features such that the mean is roughly
0. This way after scaling your features will (roughly) be between -1 and
1. Why is this important?

• More generally, let x′j =
xj−µ
s where s is the range. One could also use

the standard deviation.

• Don’t get too dogmatic about these transformations.

• If you’re solving directly using the normal equations (explained later),
then scaling is unnecessary as no iteration is involved. {I strongly suspect
scaling can be an issue even for direct approaches!}

1.2.2 Convergence Heuristics

• Plot J(Θ) vs the number of iterations (can do this while you’re iterating—
output J(Θ) to a file).

• Ideally we’d like to decrease fast and monotonically.

• One could use some automatic criterion for convergence (e.g. percent
change in J). However, Andrew has not had good experience with it and
often just looks at the plot and kills the iteration after he feels confident
it has converged.

• If your J shoots up sharply with the number of iterations, reduce your α.

• Similarly if it oscillates, use a lower α.

• There should be some α0 below which you always get a decrease. However,
it’s not obvious what that is and too low an α will lead to slow convergence.

• Andrew starts from a low α = 0.001, and tries it. He increases it each
time by a factor of 3 until he hits a sweet spot.

1.3 Alternatives to Gradient Descent
• Alternatives:

– Conjugate Gradient

– BFGS

– L-BFGS

5

• Advantages to the above:

– No need to pick α

– Usually faster

• Disadvantages:

– More complex

– Don’t write your own implementations.

1.4 Gradient Checking
• Many optimization algorithms require a gradient. If you supply one (and
not an approximation), also write up an approximation routine.

• Start a run with gradient checking, and verify that it is approximately
close to your claimed gradient.

• Then kill the run, disable the checking, and run the algorithm.

1.5 Matrix Derivatives
• Let f : Rm×n 7→ R. Define the derivative of f with respect to matrix A
as:

∇Af(A) =


∂f
∂A11

· · · ∂f
∂A1n

...
. . .

...
∂f

∂Am1
· · · ∂f

∂Amn

 (1)

• tr(AB) = tr(BA) assuming AB is square. This extends to a product of
three or more matrices—cyclic rotation.

• |A| is the determinant of A.

• ∇A tr(AB) = BT

• ∇AT f(A) = (∇Af(A))
T

• ∇A tr(ABATC) = CAB + CTABT Show!

• ∇A|A| = |A|
(
A−1

)T assuming |A| exists. {Show! To prove it, write A−1

in terms of its adjoint.}

6

1.6 Least Squares Revisited
• Given a training set, define the design matrix X to be the m×n matrix
that contains the training examples’ input values in its rows:

X =

 (x(1))T

...
(x(m))T

 (2)

This of course assumes n features.

• Let y be the m dimensional vector with the outputs.

• As hθ(x(i)) =
(
x(i)
)T

Θ, then XΘ has as its elements hθ(x(i)) and XΘ−y
is the vector of errors.

• It is straightforward to show that J(Θ) = 1
2 (XΘ − y)T (XΘ − y). Note

that zT z is the sum of the square of the elements.

• Minimize J by calculating ∇ΘJ(Θ) and setting it to 0. The result is the
normal equation: XTXθ = XTy. The solution is Θ = (XTX)−1XTy.

• XTX can be singular, but that is rare. If it happens, use the pseudoin-
verse. If this happens:

– Check that you don’t have duplicate training examples. This can
happen if you have linear dependence (e.g. same inputs but in dif-
ferent units).

– Check that you don’t have more features than the size of your data
set. If you do, either delete some or use regularization (covered later).

• If you’re solving using the normal equation (without iterating), then fea-
ture scaling is unnecessary. I have my doubts...

• The normal method doesn’t scale well with respect to n. {Andrew’s ar-
gument for this is the cost of inverting a matrix. However, one should
not have to explicitly invert the matrix to solve a linear system! Is his
argument valid if one simply does a simple solution without inversion?}

– Andrew’s heuristic. n = 1000 is OK. n = 104 is borderline. More
than that and he’d use gradient descent.

1.7 Probabilistic Interpretaion
• We can assume y(i) = ΘTx(i) + ε(i) where ε(i) is the error term.

• Assume all the error terms (across all i’s) are independent and identically
distributed Gaussians, and that the mean of the error is 0.

7

• It can be shown that the maximum likelihood function for the Θ that is
the one that is the solution to the normal equations.

– L(Θ;X,y) = p(y|X; Θ)

– L(θ) =
∏m
i=1 p(y

(i)|x(i); θ). The product is because it is assumed each
training example is independent of the others.

• This solution is independent of the σ of our distributions. Of course, it is
assumed that they are identical.

1.8 Locally Weighted Linear Regression

• In the usual linear regression, we’re trying to minimize
∑
i

(
y(i) −ΘTx(i)

)2
.

A modification is to minimize
∑
i w

(i)
(
y(i) −ΘTx(i)

)2
. The weights are

non-negative.

• Intuitively, the weights give some features more preference over others.

• A standard choice for the weights is w(i) = exp

(
− (x(i)−x)

2

2τ2

)
.

– Note that this makes the weight a function of x.
– One benefit of this is that if x is close to one of the inputs in the

training set, the weight is close to 1. This makes Θ ensure it’s a good
fit to the training sample.

– τ controls how quickly the weight declines away from a training point.
It is called the bandwidth parameter.

– If x is actually x, then the numerator is (x(i)−x)T (x(i)−x). Some-
times (x(i) − x)TΣ−1(x(i) − x) is used for some choice of Σ

– Similarities with the Gaussian (or probability in general) are superfi-
cial. Don’t look for a deeper connection. One can even use weighting
functions that integrate to infinity.

• This algorithm is an example of a non-parametric one. A parametric
algorithm uses the training data to get the parameters, and once trained,
we can discard the training data. In this algorithm the training data is
part of the algorithm (at least if it depends on x).

• Every time you make a prediction, you need to retrain everything. Why?

1.9 Random Tips
• Make sure your hypothesis function’s form makes sense.

– Don’t pick a quadratic hypothesis if when you extrapolate you get
nonsensical values (e.g. a large enough input causes a decrease when
you know from reality that never happens). Pick a cubic instead.
{Although frankly most cubics will have a drop (two extrema).}

8

• Can convert a polynomial of one feature into a linear function of many
features. Just let x2 = x2 and so on.

2 Classification
Classification is another task ML is used for. It is used for discrete outputs—
usually of finite size and few in number.

• Binary classification is where the output takes only two values. Let it
be 0 and 1.

• 0 is called the negative class and 1 the positive class. Sometimes they
are denoted by – and +.

• Given x(i) the y(i) is called the label for the training example.

• The decision boundary is the "line" (or plane or surface) that separates
the two classes. It is also called the separating hyperplane.

– The boundary is a property of our hypothesis, not of the data set.

2.1 Logistic Regression
• Of course, one could try using a linear regression algorithm for a classi-
fication problem as it is simply a special case, but it’s easy to construct
problems where linear regression has poor performance.

– An example is where an outlier in the training set will significantly
alter your hypothesis (compared to when you didn’t have an outlier).

• Try

hΘ(x) = g(ΘTx) =
1

1 + e−ΘTx
(3)

• g(z) is called the logistic or sigmoid function.

• Insert plot here.

• g(z) tends to 0 as z → −∞ and tends to 1 as z →∞. It’s monotonic and
smoothly goes to 1 (bounded between 0 and 1). This is important as it is
a binary classification problem.

• Note that for this form of the hypothesis, the decision boundary is given
by z = ΘTx = 0. Examining this can give you insights.

• Can also use other functions that smoothly go from 0 to 1.

• Note that g′(z) = g(z)(1− g(z))

• Using maximum likelihood we can compute the update rule. Let P (y =
1|x; θ) = hθ(x) and P (y = 0|x; θ) = 1−hθ(x) for a given training example.

9

– This can be written as p(y|x; θ) = (hθ(x))y(1− hθ(x))1−y.

– Then we want to maximize
∑m
i=1(y(i) log h(x(i)) + (1 − y(i)) log(1 −

h(x(i))))

– You can make your cost function to be the negative of the above.
Divide by m for some kind of normalization.

– This cost function makes sense if you consider its values near 1 and
0 (when correct or when wrong)

– Had we used the same cost function as for linear regression, our cost
function would be non-convex.

• Using maximum likelihood we get the update rule: θn+1
j = θnj +

α
∑m
i=1

(
y(i) − hθ(x(i))

)
x

(i)
j This is the same as for linear regression—but

our hypothesis is no longer linear.

• Note that this approach is essentially assuming a Bernoulli distribution.

• Note that this method does not output 0 or 1—it can output anything in
between.

2.2 The Perceptron Learning Algorithm
• What if we want it to output either 0 or 1? Make g(z) be the step function
and you get the perceptron learning algorithm if we use the same
update rule.

– Does this update rule follow from maximum likelihood?

2.3 Another way to maximize the maximum likelihood
function

• Generalization of Newton’s Method to multiple dimensions: Θn+1 = Θn−
H−1∇Θl(Θ)

– H is the Hessian matrix. Hij = ∂2

∂θi∂θj

• Faster convergence than batch gradient descent.

• Each iteration is more expensive due to inverting a matrix. Not that much
of a downside if the matrix is not large.

• Fisher scoring is when this method is used to the maximum likelihood
function.

10

2.4 Classifying into k Categories
on-vs-all:

• Take one category, and do a logistic regression on it vs everything else.

• Do the same for all the other categories.

• Then when you have a data point, try all k categories and see which one
fits it best.

3 Generalized Linear Models

3.1 The Exponential Family
• p(y; η) = b(y) exp

(
ηTT (y)− a(η)

)
– η is called the natural or canoncial parameter.

– T (y) is the sufficient statistic. It will often simply be y.

– a(η) is the log partition function. exp(−a(η)) is more or less a
normalization constant s.t. the integral of p over the whole space is
1.

• Fixing T, a, b gives a family of distributions parametrized by η.

• Bernoulli and Gaussian distributions are just special cases.

– Bernoulli: b(y) = 1, η = log(φ/(1−φ)), T (y) = y, a(η) = − log(1−φ)

– Gaussian: We’re free to use any σ (it did not impact the linear regres-
sion) so for convenience we set it to 1. η = µ, T (y) = y, a(η) = η2/2,
b(y) =

(
1/
√

2π
)

exp
(
−y2/2

)
• Can also derive the multinomial, Poisson, gamma, exponential, beta,
Dirichlet distributions from this.

3.2 Constructing GLMs
• GLM means generalized linear models

• 3 assumptions:

1. y|x; θ is a member of some exponential family.

2. Given x, the goal is to predict T (y). This is normally y. In other
words we’d like h(x) = E[y|x]. This is satisfied for both the logistic
and the linear regression.

3. η and x are linearly related: η = ΘTx

• The third assumption is a design choice of ours.

11

3.2.1 Ordinary Least Squares

• This is a special case of the GLM family.

• Assume y is continuous, and the distribution of y given x follows a Gaus-
sian where µ may be a function of x.

• From the previous section’s "equivalence" of the exponential family and
the Gaussian, we have hθ(x) = ΘTx

3.2.2 Logistic Regression

• Assuming a Bernoulli distribution gives us hθ(x) = 1/(1 + exp(−ΘTx))

• g(η) = E[T (y); η] is called the canonical response function.

• Its inverse is called the canonical link function.

• Thus for the Gaussian family g is just the identity function g(z) = z and
for the Bernoulli it is the logistic function.

3.2.3 Softmax Regression

• Assume we need to classify into k categories. We use a multinomial dis-
tribution.

• Let the output be from {1, 2, · · · , k}

• Define k − 1 parameters φi, which is the probability of getting i as the
outcome. We have k−1 of them as we have the constraint that

∑k
i=1 φi = 1

• Let:

T (i) =



0
...
1
...
0

 (4)

where the i th row is 1 and T (y) ∈ Rk−1

• For convenience, T (k) is the vector of 0’s.

• Notation. Let 1{·} be the indicator function whose value is 1 if the argu-
ment is true and 0 if false.

– Thus (T (y))i = 1{y = i}

• This is shown to be the exponential function/distribution parametrized
as:

– η is a k − 1 sized vector whose i th element is log(φi/φk)

12

– a(η) = − log(φk)

– b(y) = 1

• The link function is given by ηi = log φi
φk

for i = 1, . . . , k (ηk trivially is
0). Why?

• Inverting it to get g, the response function, φi = eηi∑k
j=1 e

ηj
.

– The denominator is merely a normalization constant. Its product
with φk gives 1.

– This function is called the softmax function.

• Apply the 3rd assumption of a GLM.

– Let θ0 = 0 for convenience. Note that θi ∈ Rn+1, with i = 1, . . . , k.
Why?

– This model is called the softmax regression

• The hypothesis outputs the estimated probability that p(y = i|x; θ) for all
i.

• l(θ) =
∑m
i=1 log

∏k
l=1

(
eθ
T
l x

(i)∑k
j=1 e

θT
j
x(i)

)1{y(i)=l}

is the log-likelihood func-

tion. Maximize θ using some technique (Newton’s, etc). Verify if I ever
use it.

4 The Problem of Overfitting
• When you have a poor fit (doesn’t match many points well), it is called
underfitting or high bias. In a sense you’re saying that the hypothesis
function is biased despite the evidence to the contrary.

• When you have a fit that matches the training data really well but per-
forms poorly otherwise, you are overfitting—also known as high vari-
ance.

• Overfitting is essentially "memorizing" your training data. You don’t
really learn much about the model!

4.1 Addressing overfitting
1. Reduce number of features:

• Manually select features.

• Model selection algorithms (it’ll choose for you what features to
keep).

13

• This entails potentially losing valuable information.

• On the flip side, too many features requires a larger data set?

2. Regularization:

• Keep all the features but reduce magnitudes of θj .

• Works well when you have a lot of features, each of which contributes
a bit to predicting y.

4.2 Regularization
• Choose small values for θi.

• You get a simpler hypothesis. Why?

• Get a "smoother" function. Why?

• Less prone to overfitting. Why?

• To force smaller θi, modify the cost function:

– J(θ) = 1
2m

[∑m
i=1

(
hθ(x

(i))− y(i)
)2

+ λ
∑n
i=1 θ

2
i

]
– Note that the sum over the features starts from i = 1. This is by

convention: θ0 is not shrunk. In practice, it makes little difference.

– λ is called the regularization parameter and the new sum is called
the regularization term.

• λ controls the tradeoff between fitting the values and keeping the hypoth-
esis simple.

• {Too large a λ will result in an almost straight horizontal line?}

4.3 Regularized Linear Regression
• The new update rule for gradient descent becomes:

– θk+1
j = θkj

(
1− α λ

m

)
− α 1

m

∑m
i=1

(
hθ(x

(i))− y(i)
)
x

(i)
j for j 6= 0.

– For j = 0, the update rule is the same as before. Verify!

• The normal equation solution is:

– Θ = (XTX + λK)−1XTy where K is like the identity matrix but
with its first element as 0. Verify. {Put K explicitly!}

– If λ > 0, then the matrix you are inverting will not be singular! Not
proven

14

4.4 Regularized Logistic Regression
• The update rule is the same as for gradient descent, but with the logistic
hypothesis.

5 Generative Learning Algorithms
• Thus far the content has been about modeling p(y|x; θ). For example
in classification, we give it a training set, and it tries to come up with a
boundary between the two categories. When trying to classify a new item,
it will check which end of the boundary the new element is.

• A different approach is to build a model of each category (independent
of other categories?) Then when a new item comes along, we see which
model fits it better.

• Discriminative learning algorithms are ones that try to learn p(y|x)
directly.

• Generative algorithms try to model p(x|y) and p(y).

– What is the probability of getting this item assuming it is of a certain
category?

– p(y) is called the class prior.

– Then use Baye’s Rule to get the p(y|x) = p(x|y)p(y)
p(x) . Note that p(x) =

p(x|y = 0)p(y = 0) + p(x|y = 1)p(y = 1).
– Of course, this makes sense only if x cannot be in multiple categories!
– As p(x) is a fixed number, we don’t really need it. Just find the y

that maximizes the numerator.

5.1 The Multivariate Normal Distribution
• µ ∈ Rn

• Covariance matrix: Σ ∈ Rn×n. Σ ≥ 0. It is symmetric and positive
semi-definite. {Verify the mean.}

• p(x;µ,Σ) = 1
(2π)n/2|Σ|1/2 exp

(
− 1

2 (x− µ)TΣ−1(x− µ)
)

– |A| is the determinant of A.

• Covariance of a random variable Z (vector valued) is defined by
Cov(Z) = E[(Z −E[Z])(Z −E[Z])T] = E[ZZT]− (E[Z])(E[Z])T . {Show
the second equality from the first.}

– It is a generalization of the variance.

• Standard normal distribution: µ = 1,Σ = I

15

5.2 Gaussian Discriminant Analysis
5.2.1 The Gaussian Discriminant Analysis Model

• If the input features x are continuous valued random variables, then we
can use the Gaussian Discriminant Analysis (GDA) model:

– y is Bernoulli(φ). So p(y) = φy(1− φ)1−y

– x|y = 0 is N (µ0,Σ)

– x|y = 1 is N (µ1,Σ)

– Note that Σ is the same in both cases! {This is a choice?}

• By maximizing the log-likelihood function, we get: (verify!)

– φ = 1
m

∑m
i=1 1{y(i) = 1}

– µ0 =
∑m
i=1 1{y(i)=0}x(i)∑m
i=1 1{y(i)=0}

– µ1 =
∑m
i=1 1{y(i)=1}x(i)∑m
i=1 1{y(i)=1}

– Σ = 1
m

∑m
i=1

(
x(i) − µy(i)

) (
x(i) − µy(i)

)T
5.2.2 GDA and Logistic Regression

• If you look at p(y = 1|x;φ, µ0, µ1,Σ) as a function of x, you’ll get p(y =
1|x;φ,Σ, µ0, µ1) = 1

1+exp(−ΘTx)

– Verify!

– Θ is some function of φ,Σ, µ0, µ1

• Note that this matches what we had earlier.

• GDA and logistic regression will give different boundaries on the same
data set.

– This is because while GDA reduces to the logistic regression in the
case of a multivariate Gaussian with common Σ, the converse is not
true: p(y|x) being logistic does not imply p(x|y) is multivariate Gaus-
sian.

• Thus GDA makes stronger assumptions (e.g. p(x|y) is Gaussian or near
it).

• GDA does better when these assumptions are valid.

• If the assumptions are correct exactly (i.e. really a Gaussian), then GDA is
asymptotically efficient. In the limit of large training sets, no algorithm
will beat the GDA.

16

• Logistic regression is more robust—it is less sensitive to errors in your
assumptions about the model.

– Hence it is used more frequently.

– Similar discussion on Naive Bayes

• On the flip side, because the assumptions GDA makes are stronger, you
need fewer training examples. The model is exploiting the extra informa-
tion it has (i.e. the assumptions).

5.3 Naive Bayes
• Assume xi’s are discrete.

5.3.1 Spam Filtering

• Example of email spam classification. Given an email, let x be the vector
such that xi = 1 if and only if the i th word in the dictionary appears in
the email.

• The set of all known words is the vocabulary.

• So x is a huge, mostly sparse vector.

• In practice they don’t use a dictionary, but use the union of the words
that appear in the training set. This has the benefit of including words
not in the dictionary.

• Sometimes some high frequency words ("and", "the") are excluded as they
rarely help in determining the spam status. These are called stop words.

• The dictionary is large, and if we use a multinomial distribution (Why
would we do that?) we would have a 2N vector space where N is the
number of words in the dictionary. Need to reduce the space.

• An assumption is made that the xi’s are conditionally independent given
y. This means that p(xi|y) = p(xi|y, xj).

– This does not mean that xi and xj are independent!

– This is called the Naive Bayes (NB) assumption and the algo-
rithm is called the Naive Bayes Classifier.

• Then p(x1, . . . , xN |y) =
∏n
i=1 p(xi|y)

• Parametrization: Let φi|y=1 be the probability: p(xi = 1|y = 1)—the
probability that given the message is spam, the i th word was present.
Let φy = p(y = 1).

• Using the maximum likelihood method, we get (Show!):

17

– φj|y=1 =
∑m
i=1 1{x(i)

j =1∧y(i)=1}∑m
i=1 1{y(i)=1}

– φj|y=0 =
∑m
i=1 1{x(i)

j =1∧y(i)=0}∑m
i=1 1{y(i)=0}

– φy =
∑m
i=1 1{y(i)=1}

m

– The interpretation of the above is obvious.

• Then to determine if a new message is spam:

– p(y = 1|x) = p(x|y=1)p(y=1)
p(x)

– Note: p(x|y = 1) =
∏n
i=1 p(xi|y = 1) and p(x) = p(x|y = 1)p(y =

1) + p(x|y = 0)p(y = 0).

• Can generalize this to cases where the value of xi is one of k choices (we
had binary above). Instead of using a Bernoulli for p(xi|y), we use a
multinomial.

– If our data set were continuous, just discretize it make it a multino-
mial.

• Discretized Naive Bayes often works well when GDA doesn’t (i.e. the con-
tinuous distribution does not follow a multivariate normal—just discretize
and apply NB).

• The Naive Bayes as presented in this section is called the multi-variate
Bernoulli event model.

5.3.2 Laplace Smoothing

• The problem with the spam filtering approach just described is that if you
now receive an email with a new word, you’ll have φj|y=1 = 0 = φj|y=0

where j represents our new word.

• To fix this, change the estimate to φj|y=1 =
1+

∑m
i=1 1{x(i)

j =1∧y(i)=1}
k+

∑m
i=1 1{y(i)=1}

– k is the number of allowed values (2 for spam).

• In general, we have φj =
∑m
i=1 1{z(i)=j}

m when the observations are inde-
pendent and j is one of the k allowed values. The Laplace smoothing
is where you add 1 to the numerator and k to the denominator.

– Note that this still sums to 1! Verify

– Under certain conditions, Laplace smoothing gives the optimal esti-
mator. What does this even mean?

18

5.3.3 Event Models for Text Classification

• Another way to do spam filtering is called themultinomial event model.

• Let xi represent the i-th word in the email. The possible values for xi are
{1, 2, . . . , |V |} where |V | is the size of the vocabulary.

– So an email of n words is represented by a vector of size n.

– n is no longer fixed across emails.

• Define φy = p(y), φi|y=1 = p(xj = i|y = 1), φi|y=0 = p(xj = i|y = 0).

– Note that we assume p(xj |y) is the same for all values of j—the
likelihood of a word being present is invariant to its position in the
text.

• Training set: x(i) is now the vector whose elements are x(i)
k .

• Using likelihood techniques, we have (Verify!):

– φk|y=1 =
1+

∑m
i=1

∑ni
j=1 1{x(i)

j =k∧y(i)=1}
|V |+

∑m
i=1 1{y(i)=1}ni

– φk|y=0 =
1+

∑m
i=1

∑ni
j=1 1{x(i)

j =k∧y(i)=0}
|V |+

∑m
i=1 1{y(i)=0}ni

– Note that I’ve applied Laplace smoothing.

• Andrew claims the multinomial event model works better than the multi-
variate Bernoulli event model.

6 Support Vector Machines
Andrew claims many consider it the best supervised learning algorithm.

6.1 Notation
• For convenience, let the negative class be y = −1 instead of y = 0.

• Instead of using Θ, we’ll parametrize usingw and b s.t. hw,b(x) = g(wTx+
b)

• Note that w is a vector and b is a scalar.

• We no longer need x0 = 1—b fills the intercept term role now.

• No longer endow a probability interpretation to this ({Why not?}). We
say that g(z) = 1 if z ≥ 0 and -1 otherwise (not a continuous function)

19

6.2 Functional and Geometric Margins
• Given a training example, the functional margin of (w, b) with respect

to the training example is given by γ̂(i) = y(i)(wTx(i) + b).

– If the functional margin is positive, we predicted correctly.
– For the functional margin to be large, we need a high wTx(i) + b

(positive for positive class, and negative for negative class).

• A large functional margin implies a correct and confident prediction.

• Note that we can artificially make the functional margin large by scaling
w and b. So we may want to enforce a normalization constraint.

• The functional margin is the distance from a training point to the seper-
ating hyperplane. {I don’t think so—true for the geometric margin!}

• Can also define a function margin with respect to the training set S:
γ̂ = mini=1,...,m γ̂

(i)

– This just means it is the "worst case" functional margin.

• Note that w will always be orthogonal to the separating hyperplane.

• Let the geometric margin be γ(i) = y(i)

((
w
||w||

)T
x(i) + b

||w||

)
– When y(i) = 1, then this represents the distance of x(i) to the decision

boundary.
– γ(i) = γ̂(i) when ||w|| = 1 (normalized).
– Hence the geometric margin is invariant to scaling.
– This property is utilized by allowing us to scale w any way it is

convenient for us to without impacting the outcome. For example,
we can freely make the constraint: |w1 + b|+ |w2| = 4

• Can also define a geometric margin with respect to the training set S:
γ = mini=1,...,m γ

(i) like we did for the functional margin.

6.3 The Optimal Margin Classifier
• The goal is to maximize the geometric margin.

• Assume we have a linearly separable data set. This means that a hyper-
plane exists that can separate all the training points.

– The optimal margin classifier will fail for data that is not linearly
separable.

• We want to find γ,w, b such that for all i = 1, . . . ,m, y(i)(wTx(i) +b) ≥ γ,
and also keep ||w|| = 1.

20

– We want to find the largest possible γ.

– In words, this means that each training example has a geomet-
ric/functional margin greater than γ, and we want to maximize that
γ.

– The problem is that ||w|| = 1 is a non-convex constraint.

– Not a general problem you can plug into an optimization routine.

• We could try replacing γ with γ̂ and maximizing γ̂
||w|| , but our objective

function is now non-convex.

• To get around this, utilize the freedom to scale the geometric margin.

• Constrain γ̂ = 1. This finally will lead to optimizing minγ,w,b
1
2 ||w||

2 such
that y(i)(wTx(i) + b) ≥ 1 ∀i

– This has a convex quadratic objective, with linear constraints.

– The solution is called the optimal marginal classifier.

– Can use a generic quadratic programming (QP) optimizer.

6.4 Lagrange Duality
• Optimizing using Lagrange multipliers works when the constraints involve
equalities. We need something that can handle inequalities.

• Primal optimization problem: minw f(w) such that gi(w) ≤ 0, i =
1, . . . , k and hi(w) = 0, i = 1, . . . , l.

• Define the generalized Lagrangian: L(w,α, β) = f(w)+
∑k
i=1 αigi(w)+∑l

i=1 βihi(w)

– αi, βi are the Lagrange multipliers.

• Consider the quantity θP(w) = maxα,β:αi≥0 L(w,α, β).

– If a w violates the primal constraints (e.g. hi(w) 6= 0 for some i),
then θP(w) =∞

– If any w satisfies the constraints, then θP = f(w)

• Try to get minw θP(w) = minw maxα,β:αi≥0 L(w,α, β)

– This is identical to the original primal problem.

– The optimal value of the objective is denoted by p∗. It is called the
value of the primal problem.

• The dual optimization problem:

– Define θD(α, β) = minw L(w,α, β)

21

– Want to get maxα,β:αi≥0 θD(α, β)

– This is similar to the primal problem except the order of the min and
the max’s have been reversed.

– Denote the result with d∗—it is called the value as well.

• Note that d∗ ≤ p∗

– This follows from the general principle that the "max min" of a func-
tion is never greater than the "min max".

• Under certain conditions we’ll have d∗ = p∗. So we can solve the dual
problem instead. The (sufficient) conditions for this to occur are:

– Let f and the gi’s be convex.

∗ If f has a Hessian, it is convex iff the Hessian is positive semidef-
inite. Verify.

∗ All linear and affine functions are convex. Verify.

– Let the hi’s be affine.

∗ Affine means that there exists ai, bi such that hi(w) = aTi w + bi

∗ Affine really means linear but allowing for an intercept term.

– Assume gi are strictly feasible.

∗ Feasible means that there exists some w so that gi(w) < 0 ∀i.
– Then there exists w∗, α∗, β∗ such that w∗ is the solution to the primal

problem, α∗, β∗ are the solution to the dual problem, and p∗ = d∗ =
L(w∗, α∗, β∗). {Stated without proof.}

– TheKarush-Kuhn-Tucker (KKT) conditions are satisfied: ({Stated
without proof})

∗ ∂
∂wi
L(w∗, α∗, β∗) = 0, i = 1, . . . , n

∗ ∂
∂βi
L(w∗, α∗, β∗) = 0, i = 1, . . . , l

∗ α∗i gi(w
∗) = 0, i = 1, . . . , k (The KKT dual complementarity

condition)
∗ gi(w

∗) ≤ 0, i = 1, . . . , k

∗ α∗ ≥ 0, i = 1, . . . , k

– If any w∗, α∗, β∗ satisfy the KKT conditions, then they are a solution
to the primal and dual problems.

– The dual complementarity condition shows that if αi ≥ 0, then
gi(w

∗) = 0.

22

6.5 Optimal Margin Classifiers
• The primal problem for the optimal margin classifier has a constraint that
can be written as gi(w) = 1− y(i)(wTx(i) + b) ≤ 0

• From KKT dual complementarity, we’ll have αi > 0 only when gi(w) = 0

– There will be only a few such points. They are called the support
vectors.

– Note that these support vectors have a functional margin of 1.
They’re the ones closest to the separating hyperplane.

• Setting it up as a Lagrange multiplier problem, can look at the dual form.
All conditions required for p∗ = d∗ are met, and so the KKT conditions
hold. So solve the dual problem instead.

• The optimal value for w∗ is
∑m
i=1 αiy

(i)x(i)

• We also will have the constraint that
∑m
i=1 αiy

(i) = 0 (in the optimal
case).

• The optimal value for the intercept term is:

– b∗ = − 1
2

(
maxi:y(i)=−1 w

∗Tx(i) + mini:y(i)=1 w
∗Tx(i)

)
Verify!

– This should be easy to derive. w∗ dictates the normal vector of your
plane. b is just the intercept. Sweep it to find the maximum.

• To make a prediction at a new input point x:

– Can use wTx + b and pick 1 or -1 accordingly.

– Look at b+
∑m
i=1 αiy

(i) < x(i),x > (and see if it is positive or nega-
tive).

∗ Note that this is straightforward as only the support vectors have
non-zero αi’s

• Is any of this valid if the data is /not/ linearly separable?

6.6 Kernels
• It had been mentioned in linear regression that given a feature x, we can

make new features from it (e.g. x2).

• New terminology: Let the "base" feature x be called an attribute, and
all features derived from it (including x, if used) are the features.

• Let φ denote the feature mapping (e.g. φ(x) =

(
x
x2

)
)

• Given a φ, the corresponding kernel is K(x, z) = φ(x)Tφ(z).

23

– This is an extension of < x, z >.

• Not all kernels K(x, z) can be written in the above form. I think we need
it to be writable in that form if we want to use them for SVM’s.

• Computing the kernel can be very fast if you don’t compute the individual
φ(x), φ(z) (e.g. O(n) vs O(n2)).

– {Or so Andrew claims. I see it in his examples, but I don’t know if
it’s a general truism}.

• Gaussian kernel: K(x, z) = exp
(
− ||x−z||

2

2σ2

)
– It is a valid kernel for an SVM (i.e. it can be written as φ(x)Tφ(z)).

• Assume K is "valid". Then we denote a k × k matrix K such that Kij =
K(x(i), x(j)) It is called the Kernel matrix.

• For a valid kernel, K is a symmetric, positive semi-definite matrix.

– It is also a sufficiency criterion for validity. Not shown.

• Mercer’s Theorem (for Rn): Let K : Rn ×Rn 7→ R. Then for K to be
valid, it is necessary and sufficient that for all {x(1), . . . , x(m)} where m is
finite, the corresponding kernel matrix is symmetric positive semi-definite.
{I think the phrasing is "for all" and not "there exists".}

– Here m is any number—it has no bearing to the training set.

• Kernels can be used for things other than SVM’s. In general, if you have
any machine learning algorithm that can be written in terms of < x, z >.
then you can replace it with K(x, z) and get a lower dimensional problem.
Generally referred to as the kernel trick.

– So you can use this trick even for linear regression, logistic regression,
perceptron, etc.

– Alternatively, think of it as a "free" way of going to higher dimen-
sions. Your problem may not be linearly separable in your initial
space, but it may be so in the higher dimensional one.

– Although you often won’t know in advance if it will be separable in
the higher dimensional space.

6.7 Regularization and the non-separable Case
• As a general rule of thumb, the higher the number of dimensions (e.g.
mapped using φ), the more likely the data will be separable. (It makes
sense!). But you shouldn’t assume it’s the case a priori.

• A separating hyperplane is susceptible to outliers. In some cases you’d
want to get those outliers wrong.

24

• l1 regularization: minγ,w,b
1
2 ||w||

2 + C
∑m
i=1 ξi such that y(i)(wTx(i) +

b) ≥ 1− ξi ∀i and ξi ≥ 0 ∀i

– Note that if ξ > 1, then for that point, your classification will be
incorrect (you need it to be positive for correctness).

– Hence this algorithm is allowing for misclassifications, and I suppose
this is where nonseparability is not a factor.

• This makes one less sensitive to outliers. Why?

• Can now have functional margins less than 1.

• Writing the Lagrangian and going through the same procedure as before,
we get the same form for w in terms of αi as before and the same equation
with inner products for making predictions to new data. I did not rederive.

– The only difference is 0 ≤ αi ≤ C Not verified.
– b∗ is now different.

• Dual-complementarity conditions are now (Not verified):

– αi = 0 =⇒ y(i)
(
wTx(i) + b

)
≥ 1

– αi = C =⇒ y(i)
(
wTx(i) + b

)
≤ 1

– 0 < αi < C =⇒
(
wTx(i) + b

)
= 1

6.8 The Sequential Minimal Optimization (SMO) Algo-
rithm

6.8.1 Coordinate Ascent

• Let W be a function of n variables αi. We want to find the α that maxi-
mizes it.

• In each iteration, find the α̂i that maximizesW (α1, . . . , αi−1, α̂i, αi+1, . . .)
and update αi with it. Do this in sequence for all the α’s (you can choose
an ordering—and it probably matters). Repeat until you converge.

• It will take more iterations than Newton’s method. However, the inner
loop tends to be quite cheap—it’s a lot easier to maximize with respect to
one variable. So it need not be that much slower than Newton’s method.

6.8.2 The Sequential Minimal Optimization (SMO) Algorithm

• To reiterate, here’s the problem we want to solve: maxαW (α) =∑m
i=1 αi −

1
2

∑m
i,j=1 y

(i)y(j)αiαj < x(i),x(j) > such that 0 ≤ αi ≤ C, i =

1, . . . ,m and
∑m
i=1 αiy

(i) = 0

• Can’t directly use coordinate ascent because one of the constraints would
be violated. Fixing all but one α fixes that one as well.

25

• So we need to update two α’s at a time.

• The SMO algorithm:

1. Select αi, αj to update next.

2. Reoptimize W (α) with respect to αi, αj holding all others constant.

3. Repeat until convergence.

• Test for convergence can be done by seeing if KKT conditions are satisfied
to within some tolerance.

– Typically the tolerance is 0.001 to 0.01.

• The update can be done efficiently.

• {Read his notes and add the details here—may need to refer to Platt’s
paper!}

6.9 SVM & Kernel Method Examples
1. Say you want to recognize a digit—you scan it into an n × n grid. Then

using a kernel like K(x,y) = (xTy)d or the Gaussian kernel, you can do
as well as the best neural networks.

• This occurs in a Rn
2

space, but kernel methods reduce the complex-
ity.

• You don’t need to know which pixel is adjacent to which one.

2. A typical protein sequence can be represented by BADEMDIMENG-
NIQ. . . etc. Each letter represents an amino acid. The sequence length
is variable. Need to categorize a protein into one of a number of classes.

• Represent φ(x) by looking at all possible 4-letter sequences counting
how many times each of them appears in the given sequence.

• So you end up with a vector of dimension 264.

• There are clever ways using dynamic programming for taking the
scalar product, so the algorithm is fast.

7 Support Vector Machines—Coursera Treatment
• Let the classes be 0,1 as we originally had them.

• The cost function is now:

– C
∑m
i=1

[
y(i)cost1(ΘTx(i)) + (1− y(i))cost0(ΘTx(i))

]
+ 1

2

∑n
i=1 θ

2
j

– By convention we don’t have the m term—it’s a scaling factor any-
way.

26

– C is essentially 1/λ—another convention.

– The cost functions are essentially 0 when the argument is greater
than 1 (for positive class) and increase linearly as you decrease the
argument. For the negative class it is just the reflection about the
x-axis—the "corner" point is now at -1.

∗ Draw cost functions!

– The cost functions are a crude approximation of the one you have for
logistic regression.

– If y = 1, we want ΘTx ≥ 1 (and not just 0).

– If y = 0, we want ΘTx ≤ −1 (and not just 0).

• Hypothesis: If ΘTx ≥ 0, predict 1. Else predict 0. It is now very binary
(not a probability).

• So note that even if you predicted correctly, you may still incur a cost.

• {Not clear how this formalism ties to the one in the previous chapter. Here
we’re allowing Θ to vary in length—this is essentially not constraining w
to be 1.}

• Assume we have a separating hyperplane. We’re minimizing ||Θ||, which
will in effect move/rotate the separating hyperplane to an ideal point.

– This works because if you have a poor hyperplane, then ΘTx(i) may
be small for a given point, and you’d need a large ||Θ|| to compensate
for it to make ΘTx(i) ≥ 1 (for positive class) so that you have no
contribution to the cost function by the first sum.

7.1 Kernels
• Define l(i) = x(i) for i = 1, . . . ,m.

– Note that using all m training inputs is merely one way to do it.

• Given x, Define fi = K(x, l(i)) where K is a kernel as discussed in the
previous chapter. It could be the Gaussian kernel, for example.

• Consider this a mapping of x(i) 7→ f (i) where f is the vector of all fj
associated with x(i). Its dimension is m or m+ 1.

– Clearly f (i)
i = 1 for the Gaussian kernel.

• Can also define f (i)
0 = 1

• To make a hypothesis, evaluate ΘT f and see if it’s greater than 0.

• So we’ve transformed the "base" features x into m new features.

• To train, minimize the cost function as before, but use ΘT f (i)

27

• In many/most implementations, for regularization, instead of minimizing
||Θ||2, they minimize ΘTMΘ where M is a matrix tied to your choice of
kernel.

– This is done for computational efficiency to offset the fact that your
Θ is large (m entries).

• Andrew suggests not writing code to minimize the cost function but in-
stead using an off the shelf SVM code.

– Examples are liblinear and libsvm.

• To pick σ:

– A large σ causes fi to vary smoothly. Leads to a higher bias and
lower variance.

7.2 Choice of Kernel
• Linear kernel:

– The same as no kernel. Use this if your n is large and m is small.

• Gaussian kernel:

– Use if n is small and m is large.
– Perform feature scaling before using the Gaussian kernel.

• Polynomial kernel: K(x, l) = (xT l + a)d

– Usually used when all xi, li are non-negative.

• Other kernels:

– String kernel
– Chi-square kernel
– Histogram Intersection kernel.

• Always try linear/Gaussian kernel first!

• If you implement your own kernel, you must satisfy Mercer’s Theorem.
Most SVM algorithms will rely on this.

7.3 Logistic Regression vs SVM
• If n ≥ m, use logistic regression or a linear kernel.

• If n = 1− 10000,m = 10− 10000, use a Gaussian kernel.

• If n = 1 − 1000,m ≥ 50000, then create/add more features and then use
logistic regression or a linear kernel. Gaussian kernel may be very slow to
run for large m.

• Neural network likely to work well, but slower to train.

28

8 Neural Networks
• Say you have n features. The way to form a neural network is to pass all n
features into k sigmoid functions, each of which outputs an ai = g(ΘT

i x)
where Θi is a vector of dimension n and is the set of parameters that
correspond to the i-th sigmoid function. These ai in turn are passed to
another sigmoid function which outputs the final hypothesis hΘ(x) = aTΘ,
where Θ depends on all k + 1 Θi ’s

• To train it, use the objective function J(Θ) = 1
2

∑m
i=1

(
hΘ(x(i))− y(i)

)2
• Can apply gradient descent. Back propagation is the formal term used,
but it’s just gradient descent.

• Almost always a non-convex optimization problem. Can get stuck in a
local optimum.

• Considered the most effective learning algorithm before SVM’s (and that
claim is still contested).

• x0 = 1 is called the bias unit. Not always drawn in the diagrams.

• Activation function is usually just another name for the sigmoid func-
tion.

• Weights are just another way of saying "parameters".

• The first layer is called the input layer. The final layer is the output
layer. Intermediate layers are called hidden layers.

• a
(j)
i : Activation of unit i in layer j.

• Θ(j): Matrix of weights controlling function mapping from layer j to layer
j + 1.

– Θ
(j)
mn is the n-th weight of the m-th activation unit in layer j + 1.

• Have a diagram of a neural network!

• Let z(j+1)
i =

∑m
k=0 Θ

(j)
ik xk

• Then a(j)
i = g(z

(j)
i)

• In vector notation, this becomes: z(j+1) = Θ(j)a(j) where by convention
we have a(1) = x

• a(j) = g(z(j)) where g is the sigmoid function and this is merely shorthand
notation for saying we apply g to all the elements of z

• This is forward propagation.

29

• One benefit of neural networks over linear regression is that the latter
explodes combinatorially if you want all combinations of your inputs (e.g.
you have k base features and you want all 4–fold products like x1x3x4x6

and x3
2x5)

8.1 Multiclass Classification
• You now have multiple outputs, with your output being a vector (e.g. [1
0 0 0] for class A, [0 1 0 0] for class B, etc). Thus your training set label
will also be a vector.

8.2 Cost Function
• Let L be the number of layers in the network.

• Let sl be the number of units in layer l, excluding the bias unit.

• Let k be the number of output units (sL).

• Cost function for a neural network:

J(Θ) = − 1

m

[
m∑
i=1

K∑
k=1

y
(i)
k log(hΘ(x(i)))k + (1− y(i)

k) log(1− (hΘ(x(i)))k)

]
+
λ

2m

L−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(Θ
(l)
ji)2

– hΘ(x) ∈ RK where K is the number of outputs.

– Note: No sum over the bias units for regularization. It doesn’t really
make a big difference, though.

– I’m being sloppy about vector notation.

• The cost function is typically non-convex—in practice it’s not a serious
problem, though.

8.3 Backpropagation Algorithm

• Notation: Let δ(l)
j be the "error" of node j in layer l.

• For the output node, δ(L)
j = a

(L)
j − yj . Can write it in vector notation.

– I’m being sloppy about vector notation

• Then for the next to last layer, δ(L−1) = (
(
Θ(L−1)

)T
δ(L))T g′(z(L−1))

– g′(z(k)) = (a(k))T (1− a(k)) Verify!

• No δ(1) term.

• Can show that if you ignore regularization:

30

– ∂

∂Θ
(l)
ij

J(Θ) = a
(l)
j δ

(l+1)
i Show it!

• Algorithm:

– Set ∆
(l)
ij = 0 for all i, j, l. These will be a proxy for the partial

derivatives (gradient needed for optimization).

– For i = 1 to m (number of training examples):

∗ Set a(1) = x(i)

∗ Perform forward propagation to compute a(l) for l = 2, . . . , L

∗ Using y(i), compute δ(L) = a(L) − y(i)

∗ Compute δ(L−1), . . . , δ(2)

∗ Set ∆
(l)
ij := ∆

(l)
ij + a

(l)
j δ

(l+1)
i In matrix notation this is ∆(l) =

∆(l) + δ(l+1)(a(l))T Verify!

– Compute D(l)
ij := 1

m∆
(l)
ij + λΘ

(l)
ij if j 6= 0 and D(l)

ij := 1
m∆

(l)
ij if j = 0.

Recall that j = 0 is a bias term.

∗ I think it should be λ/m!

• Can show that D(l)
ij is the partial derivative of the cost function with

respect to Θ
(l)
ij Show!

• So now you have the cost function and the derivative. Can use conjugate
gradient, etc.

8.3.1 Implementation Details

• As backpropagation has a lot of minute details you can screw up, use
gradient checking.

• Don’t use a vector of 0’s as your initial guess.

• Instead initialize Θ
(l)
ij to a random value between −ε and ε. This is just

to ensure symmetry breaking.

– One strategy for picking ε is to relate it to the number of units in the
network.

– ε =
√

6√
Lin+Lout

– Lin = sl and Lout = sl+1 for Θ(l)

8.4 Putting All The Pieces Together
• Pick an architecture.

– By default, choose 1 hidden layer. You can try cross-validation to
figure out how many layers to use.

31

– If you have more than 1 hidden layer, have the same number of hidden
units per layer.

– More units is better. Anywhere from the number of inputs to 2-4×

• Randomly initialize weights

• Implement forward propagation to calculate hypothesis.

• Compute cost function.

• Implement backward propagation.

• Use gradient checking to confirm your gradients.

• Use gradient descent or similar algorithm to minimize the cost function.

– A larger neural network will result in overfitting and you’ll have to
regularize. However, this usually works out better than a smaller
neural network.

9 Learning Theory
• Generalization error of a hypothesis is its expected error on examples
not necessarily in the training set.

• Bias of a model is the expected generalization error even when fit to a
very large or infinite training set. I suppose this means it is the error from
the model, as opposed to from your data.

• Definition of variance?

• Union Bound: P (
⋃
iAi) ≤

∑
i P (Ai) as long as the union is of a count-

able number of sets.

• Hoeffding Inequality: Let Z1, . . . , Zm be independent and identically
distributed random variables from a Bernoulli distribution (P (Zi = 1) =

φ). Let φ̂ = (1/m)
∑m
i=1 Zi be the mean of these random variables. Let

γ > 0. Then P (|φ− φ̂| > γ) ≤ 2 exp(−2γ2m) Not proven.

– Also called the Chernoff bound.

– Informally, it is saying that if you estimate φ by taking the average
of a number of observations, then your estimate will be good as long
as the number of observations is large.

32

9.1 Definitions
• Restrict ourselves to binary classification, but the results will apply to
regression, etc.

• Let the training set S be of size m and the training examples (x(i), y(i))
be drawn from an independent and identically distributed distribution D.

• The training error of a hypothesis h is ε̂(h) = 1
m

∑m
i=1 1{h(x(i)) 6= y(i)}

– This is just the fraction of cases we misclassify.

– Also known as the empirical risk or the empirical error.

– Note that it depends on the training set S.

• Define the generalization error as ε(h) = P(x,y)∼D(h(x) 6= y)

– It is the probability of misclassifying a new sample (not necessarily
from the training set).

– Note that it is assumed that this is coming from the same set D. This
is one of the PAC (probably approximately correct) assumptions,

• One way to minimize the training error is θ̂ = arg minθ ε̂(hθ) for the linear
classification case.

– This is called the empirical risk minimization (ERM) and the
resulting hypothesis is ĥ = hθ̂.

– ERM is one of the most basic learning algorithms.

– This is a non-convex optimization problem. It is NP hard.

– The logistic regression can be thought of as an approximation to
ERM to make it a convex optimization.

• The hypothesis class H used by a learning algorithm is the set of all
classifiers considered by it.

• ERM is a minimization over H—the learning algorithm picks the hypoth-
esis: ĥ = arg minh∈H ε̂(h).

9.2 Finite H
• Let H be a set of k hypotheses (for linear classification!).

• ERM will select one of these hypotheses with respect to a training sample.

• Can show that the probability that there does not exist a hypothesis in
the training set such that P (|ε(hi)− ε̂(hi)| > γ) (i.e. we are always within
γ) is greater than or equal to 1− 2k exp(−2γ2m).

– This is called the uniform convergence result.

33

– If k is large (which it normally is), then this isn’t a very useful result.

• An algorithm’s sample complexity is the m needed to get a certain level
of performance.

• Let h∗ be the best possible hypothesis in H. Then ε(ĥ) ≤ ε(h∗) + 2γ.

• Let |H| = k and fix m, δ. Then with probability at least 1 − δ, we have

ε(ĥ) ≤ (minh∈H ε(h)) + 2
√

1
2m log 2k

δ

• Let |H| = k and fix δ, γ. Then for ε(ĥ) ≤ minh∈H ε(h) + 2γ to hold with
probability at least 1− δ, it suffices that m ≥ 1

2γ2 log 2k
δ

9.3 Infinite H
• All results below are for ERM for linear classification—may not be that
correct for other algorithms.

• Given a set S of d points x (not necessarily the training set), we say that
H shatters S if H can realize any labeling on S.

– In other words no matter what labels you give to the x’s, there will be
some hypothesis that guesses them correctly (a different hypothesis
for each method of labeling).

• Let H be the set of linear binary classifiers.

– It can shatter any set of 2 points.

– But not all sets of 3 points (it cannot handle 3 collinear points).

– It cannot shatter even a single set of 4 points.

• Given H, its Vapnik-Chervonenkis dimension V C(H) is the size of
the largest set it can shatter.

– Its value could be ∞.

– This does not mean it can shatter any set of that size—just that
there exists at least one set of that size that it can shatter.

• For linear classifiers in n dimensions, V C(H) = n+ 1. Not proven. Yaser
proves it for the perceptron algorithm.

• Given H, let d = V C(H). Then with probability at least 1 − δ, we have

for all h ∈ H, |ε(h)− ε̂(h)| ≤ O
(√

d
m log m

d + 1
m log 1

δ

)
Not shown!

– Thus, with probability at least 1−δ, ε(ĥ) ≤ ε(h∗)+O
(√

d
m log m

d + 1
m log 1

δ

)
Haven’t verified!

34

• If you do the math, this means that you need m = O(d) {Did not verify.}

– It is also a lower bound. So it should be m = Θ(d)?

• For most ordinary problems, d will be roughly similar to the number of
parameters in your model. So as a heuristic, if you increase the number of
parameters, then you correspondingly should increase (roughly linearly)
the number of training examples you use.

10 Model Selection
The main idea is: How can we decide which algorithm will work best for our
problem? This could be linear regression vs neural networks vs SVM, or even
hypotheses within each of these models (how many features, etc).

• Assume we have a finite set of modelsM.

10.1 Cross Validation
• Assume you have a training set S.

10.1.1 Bad Method

• Poor algorithm:

– Train each Mi on S to get hi.
– Pick the hypothesis with the smallest training error.

• It’s poor because you can always overfit to get a small training error.

10.1.2 Hold-Out Cross Validation

• Algorithm:

1. Randomly split S into Strain (usually 70% of the data) and Scv. cv
stands for cross validation.

2. Train each Mi on Strain to get hi.
3. Choose the hypothesis with the smallest ε̂Scv (hi)

• Usually the hold out cross validation set has between 1/4 and 1/3 of the
data.

• One could use step 3 to select the model Mi, and then retrain over the
whole S.

– Often a good idea unless your algorithm is sensitive to small pertur-
bations in the data.

• Downside: You "waste" 30% of the data.

35

• If you want to report the generalization error (the expected error on
untested samples), do not report the error on the cross validation set
as the generalization error. Do it on a "test" set that has not been used
for either training or cross validation.

– Some times people use 60% for training, 20% for cross validation,
and 20% to report the generalization error.

10.1.3 k-fold Cross Validation

• Algorithm:

1. Randomly split S into k disjoint subsets of m/k training examples.

2. For each Mi:

– For each j = 1, . . . , k, train Mi on all the subsets except Sj to
get hij .

– Test hij on Sj to get ε̂Sj (hij)
– Take the average of ε̂Sj (hij)—averaged over j.

3. Pick theMi with the lowest averaged error, and then retrainMi over
S.

• k = 10 is typically used.

• Generally this method is more expensive than hold-out cross validation.

10.1.4 Leave-One-Out Cross Validation

• At extremes people take k = m for the above.

• This is essentially training on all but one example in S, and using that
one as the test.

• This method is called leave-one-out cross validation.

10.1.5 Comments

Can use these techniques to evaluate a single model/algorithm. {I don’t under-
stand how!}

10.2 Feature Selection
• You may have a large n (possibly even larger than m). You want to pare

it down to the main features.

• Use heuristics to drop the number

36

10.2.1 Forward Search

• Algorithm:

1. Initialize F = ∅.
2. Repeat:

– For i = 1, . . . , n, if i /∈ F , let Fi = F
⋃
{i}, and use some cross

validation technique to evaluate Fi
– Pick the Fj that worked best in the above step and set it to F .

3. Select the best feature set of all the ones evaluated.

• Have to decide when to stop the outer loop.

– One method is to stop when |F| hits some size (which could be n).

• This algorithm is an instance of a wrapper model feature selection.
They work well but are expensive.

10.2.2 Backward Search

• Start with the full set of features, and delete one at a time until you have
the empty set.

10.2.3 Filter Feature Selection

• Computationally cheaper

• Assign a score S(i) that tells you how informative each xi is about the
class labels y. Then pick the k features with the largest scores.

• Choose S(i) to be the mutual information MI(xi, y) between xi and y:
MI(x, y) =

∑
xi∈{0,1}

∑
y∈{0,1} p(xi, y) log p(xi,y)

p(xi)p(y) .

– This equation assumes both xi and y are binary. More generally the
sum would be over the domain of each.

– The probabilities in the equation can be estimated based on their
distributions in the training set.

• The mutual information can be expresses as a Kullback-Leibler (KL) di-
vergence: MI(x, y) = KL(p(xi, y)||p(xi)p(y))

– This gives a measure of how different p(xi, y) and p(xi)p(y) are.
– If they were independent random variables, then they’d be equal and

the divergence would be 0.
– In the independent case the score should be low—knowing xi doesn’t

help us know y.

• Once you have ranked the features, how do you pick k? One way is to use
cross validation to select the k.

37

10.3 Bayesian Statistics and Regularization
• Frequentist view: θ is a constant, but unknown quantity. It is not

random. We use statistics to estimate it.

• Bayesian view: θ is a random variable. Specify a prior distribution
p(θ) that expresses "prior beliefs".

• Given a training set S, compute the posterior distribution:

– p(θ|S) = p(S|θ)p(θ)
p(S)

– Which is equal to (
∏m
i=1 p(y

(i)|x(i),θ))p(θ)∫
θ(

∏m
i=1 p(y

(i)|x(i),θ)p(θ)) dθ

• p(y(i)|x(i), θ) comes from your model (e.g. the one we used for logistic
regression, etc).

• Note the switch from p(y|x; θ) to p(y|x, θ).

• Given a new test example x, compute the posterior distribution on y using
the posterior one on θ: p(y|x, S) =

∫
θ
p(y|x, θ)p(θ|S) dθ

• To get the expected value of y given x, calculate E[y|x, S] =
∫
y
yp(y|x, S) dy

• Doing all those integrals is expensive—especially if θ has a lot of features.
So we approximate p(θ|S).

• One approximation is to use the maximum a posteriori (MAP) esti-
mate: θMAP = arg maxθ

∏m
i=1 p(y

(i)|x(i), θ)p(θ)

– This is almost the same as the maximum likelihood estimate for θ.
Verify!

• In practice, a common choice for p(θ) is θ ∼ N (0, τ2I)

– With this choice, θMAP will have smaller norm than what you get
from maximum likelihood. Not shown! {So what does that mean?}

– This will cause the estimate to be less susceptible to overfitting than
maximum likelihood. Why?

– Bayesian logistic regression good for text classification.

11 The Perceptron and Large Margin Classifiers
• Batch Learning: First given the training set, then evaluate h on separate
test data.

• Online Learning: Algorithm has to make predictions while it’s learning.

• For convenience, let the negative class be −1 in this section and we’ll
consider the perceptron algorithm.

38

• If, given (x, y), the hypothesis correctly classifies the input, no updates to
the weights are needed.

• If it misclassifies, then we update Θ := Θ + yx. {He claims this is the
same as the earlier update rule with −1 instead of 0 and with α dropped
(not useful in perceptron), but I can’t reproduce that claim.}

• Theorem: Let’s say you have a sequence of (x(1), y(1)), . . . , (x(m), y(m)),
and that ||x(i)|| ≤ D ∀i. If there exists a unit-length vector u such that
y(i) · (uTx(i)) ≥ γ for all examples (this implies u separates the data
with a margin of at least γ), then the total number of mistakes the online
perceptron algorithm makes is at most (D/γ)2.

12 The k-means Clustering Algorithm
• This is an unsupervised learning algorithm for clustering a set ofm points.

• Algorithm:

1. Initialize cluster centroids µ1, . . . , µk ∈ Rn randomly—assuming
we want k clusters.

– One option is to pick k of the m points, and use those as your
initial µi.

2. Repeat until convergence:

– For every i, set c(i) = arg minj ||x(i) − µj ||2

∗ This is basically finding the centroid closest to each point.

– For each j, set µj :=
∑m
i=1 1{c(i)=j}x(i)∑m
i=1 1{c(i)=j}

∗ This is moving the centroid to the mean of the points as-
signed to it.

3. If at any point you have a µj that has no points assigned to it, can
do one of two things:

– Eliminate that cluster (so you’ll have k − 1 ones). This is more
common.

– Randomly assign it elsewhere.

• k is a parameter of the algorithm. It is the number of clusters we desire.
µj will represent the centroid of a cluster.

• The algorithm is guaranteed to converge. Not shown.

• Let the distortion function be J(c, µ) =
∑m
i=1 ||x(i) − µc(i) ||2

• k-means is coordinate descent on J . Step 1 will minimize c(i) while holding
µj fixed. Step 2 does the opposite.

39

• In principle, it is possible to have oscillations between different clusterings,
but it is very unlikely.

• J is non-convex, so a global minimum is not guaranteed.

– However, in practice, it tends to work quite well.
– To get around this, you can run the algorithm many times (50—1000)

with different initial values. Then pick the one with the lowest J .
– If K = 2 − 10, then running it several times can really help. If K

is large, you don’t get much benefit and you might as well use your
first guess.

• To choose the number of clusters, the most common approach is to pick
one through visualization of the data. You can try other methods, but
keep this in mind.

• One approach is to plot J vs K. Pick the "elbow" point beyond which J
doesn’t reduce much.

– You often don’t get a clear elbow.

• Sometimes your application domain will suggest a K.

13 Mixtures of Gaussians and the EM Algorithm
• EM is the Expectation Maximization algorithm.

• Let’s say we assume that each z(i) (unknown to us) is a value from 1 to k
(integer). We assume that P (x(i)|z(i) = j) ∼ N (µj ,Σj)

• z(i) indicate which of the k Gaussians each x(i) came from.

• This is the mixture of Gaussians model.

• The z(i)’s are latent random variables as they are hidden.

• If we try to solve this using log likelihood, then we don’t get a closed form
expression.

• Is k known?

• The EM algorithm:

– Repeat until convergence:

1. E-step: For each i, j, set w(i)
j = p(z(i) = j|x(i);φ, µ,Σ)

2. M-step: Update the parameters:

∗ φj = 1
m

∑m
i=1 w

(i)
j

∗ µj =
∑m
i=1 w

(i)
j x(i)∑m

i=1 w
(i)
j

40

∗ σj =
∑m
i=1 w

(i)
j (x(i)−µj)(x(i)−µj)T∑m

i=1 w
(i)
j

• The E-step tries to guess z(i). The M-step updates the parameters based
on the guess.

• Susceptible to local optima, so repeat several times with different initial-
izations.

14 Dimensionality Reduction

14.1 Motivation
• One motivation is to compress the data to speed up the algorithm.

– Can do this if it seems, for example, that data in 3-D seems to lie on
a plane. Parametrize it then into two new features (instead of the
original three).

– This works well if some features have a strong correlation. Often the
case with a lot of features and large data sets.

• Another motivation is to aid in visualization (e.g. to understand the sys-
tem, diagnostics, etc).

• The new features need not have a meaning.

14.2 Principal Component Analysis
• First perform feature normalization and scaling.

• Problem statement. If you want to reduce from n-dimensions to k-
dimensions, find u1, . . . ,uk ∈ Rn such that the projection error is mini-
mized.

• PCA is not linear regression. In the latter you’re not minimizing the
projection—you’re minimizing something else.

14.3 Principal Component Analysis Algorithm
• Compute the covariance matrix: Σ = 1

m

∑n
i=1 x

(i)(x(i))T

– Should the index for the summation be m or n?

• This matrix is symmetric positive semi-definite.

• Compute its eigenvectors.

– Andrew prefers using SVD to do so—claims it is more numerically
stable for these kinds of matrices than the usual eigenvector routines.

41

• Pick the first k eigenvectors from the SVD result.

– {Why the first ones? Are the singular values sorted from highest to
lowest?}

• Let z = [u(1) . . .u(k)]Tx (matrix whose columns are the eigenvectors).
This is the projection in the reduced space.

• This procedure minimizes the projection error:
∑m
i=1 ||x(i) − z(i)||2 Not

shown.

• To choose k, one heuristic is to pick the minimum k that satisfies:∑m
i=1 ||x(i) − z(i)||2∑m

i=1 ||x(i)||2
≤ 0.01

– The denominator is the variance. So in effect 99% of variance is
"retained"

– Can use 0.05 or 0.1 if 0.01 won’t work. Don’t go above 0.15.
– The quantity above is equivalent to:

1−
∑k
i=1 Sii∑n
i=1 Sii

∗ where Sii are the singular values.
∗ This is much less expensive to calculate!
∗ Shouldn’t the sum be to m instead of n?

• To get back x from z, do xapprox = UT z where U is the truncated k × n
matrix of eigenvectors you got from SVD.

– This is only an approximation of the original x unless the correlation
was 1.

• Run PCA only on the training set! So m is the number of entries in the
training set—exclude the cross-validation set.

• For visualization, only k = 2 or 3 would be effective. It’s mostly used for
data compression.

• Do not try to use PCA to prevent overfitting!

• Only use PCA if you can’t do without it (i.e. if memory or speed is a
constraint).

15 Anomaly Detection
• Examples:

– Detecting outliers.
– Detecting fraud.

• You usually have a data set of non-anomalous examples.

42

15.1 Algorithm
• Assume xj ∼ N (µj , σj)

• Define p(x) =
∏n
j=1 p(xj ;µj , σj).

– This implicitly assumes the features are independent. This is rarely
true but Andrew claims the algorithm is robust nevertheless.

– This is called the density estimation.

• Algorithm:

– Choose features xi that you think may be indicative of anomalous
behavior.

– Fit parameters µj , σj :

µj =
1

m

m∑
i=1

x
(i)
j

σ2
j =

1

m

m∑
i=1

(
x

(i)
j − µj

)2

– Given a new example x, compute p(x)

– It is an anomaly if p(x) < ε (ε is chosen independently).

• To understand the rationale, consider the extreme case where all features
are far along the tail of the Gaussian. That’s clearly anomalous, and p
will be very low.

15.2 Evaluating the Algorithm:
• Assume we have labeled data of anomalous and non-anomalous examples.

• Make a training set out of it and unlabel them. Make all of them are
non-anomalous (although it’s OK if it contains a few anomalous ones).
Perhaps use 60% of the labeled data for this.

• Create a test and cross-validation set—include anomalous examples among
them. Perhaps 20% each. Put half of the anomalous examples in each.

• Fit model p(x) on training set.

• On a cross validation example, predict anomalousness.

• Pick your evaluation metric carefully. It’s likely your data is heavily
skewed (few anomalies).

– True positive, true negative, false positive, false negative.
– Precision/recall
– F1 score.

• Can use the cross-validation set to choose ε.

43

15.3 Anomaly Detection vs Supervised Learning Algo-
rithm

Prefer anomaly detection when:

• Very small number of positive samples (0—20) and large number of neg-
ative examples.

• If you have many different types of anomalies. Hard for any algorithm to
learn from positive examples—new ones may look nothing like previously
known ones.

15.4 Choosing What Features to Use
• Make a plot (e.g. histogram) to see if the data is Gaussian.

– Although it often works OK if it’s not Gaussian.

• If it’s not Gaussian, try a transformation that makes it look Gaussian.

– Try log(x+ c), or xc.

• A common problem is where both your normal and anomalous examples
end up with a comparable p. That means you may need to add another
feature. Examine the anomalous example to see if you can find anything
that sets it apart from the others.

• Try to choose features that take very large or small values on an anomaly.

15.5 Using the Multivariate Gaussian Distribution
• It can happen that when you examine the data, you can clearly see anoma-
lous examples, but the individual features don’t seem anomalous when you
look at each one independently of the others. The algorithm may fail for
this.

• Model p(x) as a multivariate Gaussian all in one go.

– µ ∈ Rn

– Σ ∈ Rn×n {I think this is the covariance matrix.}

• To fit:

– µ = 1
m

∑m
i=1 x

(i)

– σ = 1
m

∑m
i=1(x(i) − µ)(x(i) − µ)T

• The original model using a Gaussian for each feature is a special case of
the multivariate. So why use it?

– Use the original if performance is a concern—it tends to scale better
with n.

44

– Use the original model if m < n. The multivariate model simply
won’t work in this case—Σ will be singular. As a rule of thumb, if
m < 10n, use the original.

• Andrew claims you do not need to create new features to catch anomalies
if you use the multivariate model.

• If you find that Σ is singular, then consider the possibility that your fea-
tures are linearly dependent. Very rare.

16 Recommender Systems
As a motivating example, let’s consider a movie recommendation system.

• Notation:

– nu is the number of users.

– nm is the number of movies.

– r(i, j) = 1 is the user j has rated movie i. 0 otherwise.

– y(i,j) is the rating by user j on movie i.

– Θ(j) is the parameter vector for user j.

– x(i) is the feature vector for movie i. As an example, x1 ' 1 means
it is heavily romance, x2 ' 0.5 means it has some comedy, etc.

– m(j) is the number of movies rated by user j.

• We have x0 = 1 as usual.

• For each user j, learn parameters Θ(j) ∈ Rn+1. Then predict user j’s
rating for movie i with (Θ(j))Tx(i)

• Learning function for user j:

min
Θ(j)

1

2

∑
i:r(i,j)=1

(
(Θ(j))Tx(i) − y(i,j)

)2

+
λ

2

n∑
k=1

(Θ
(j)
k)2

• Learning function for all users:

min
Θ(1),...,Θ(nu)

1

2

nu∑
j=1

∑
i:r(i,j)=1

(
(Θ(j))Tx(i) − y(i,j)

)2

+
λ

2

nu∑
j=1

n∑
k=1

(
θ

(j)
k

)2

• This is pretty much the same as linear regression but without the division
by m which was merely a scaling factor any way.

• Gradient Descent Update:

45

– k = 0:

Θ
(j)
k := Θ

(j)
k − α

∑
i:r(i,j)=1

(
(Θ(j))Tx(i) − y(i,j)

)
x

(i)
k

– k 6= 0:

Θ
(j)
k := Θ

(j)
k − α

 ∑
i:r(i,j)=1

(
(Θ(j))Tx(i) − y(i,j)

)
x

(i)
k + λθ

(j)
k


16.1 Collaborative Filtering

• In the previous section, we assumed we had a x(i) for every movie. But
how do we know what weights to give to a money with respect to romance,
comedy, action, etc? It’s not like you can get someone to watch all the
movies and rank them.

• But if you’re Netflix, you can get your customers to do it!

• New problem: Given Θ(j) for many j’s, (i.e. for many people), try to
optimize to get x(i):

min
x(i)

1

2

∑
j:r(i,j)=1

(
(Θ(j))Tx(i) − y(i,j)

)2

+
λ

2

n∑
k=1

(
x

(i)
k

)2

• To learn it for all movies:

min
x(1),...,x(nm)

1

2

nm∑
i=1

∑
j:r(i,j)=1

(
(Θ(j))Tx(i) − y(i,j)

)2

+
λ

2

nm∑
i=1

n∑
k=1

(
x

(i)
k

)2

• Compared to the previous section, this sounds like a chicken and egg
problem. So what you do is make an initial guess of Θ(i), get x and
use that to revise your guess for Θ(i). I think Andrew claims it usually
converges.

• A more systematic way is to minimize:

1

2

∑
(i,j):r(i,j)=1

(
(Θ(j))Tx(i) − y(i,j)

)2

+
λ

2

nm∑
i=1

n∑
k=1

(
x

(i)
k

)2

+
λ

2

nu∑
j=1

n∑
k=1

(
θ

(j)
k

)2

– Minimize over all the x(i),Θ(j) simultaneously.

– Drop x0 = 1 and θ0—Since we’re co-optimizing, the optimizer will
handle both (in a sense).

– The first sum is the same as the sum in the original two formulations
(and those two are identical, if you think about it).

46

• Algorithm:

– Initialize x(i),Θ(i) to small random values.

– Update step in gradient descent:

θ
(j)
k := θ

(j)
k − α

 ∑
i:r(i,j)=1

(
(Θ(j))Tx(i) − y(i,j)

)
x

(i)
k + λθ

(j)
k



x
(i)
k := x

(i)
k − α

 ∑
j:r(i,j)=1

(
(Θ(j))Tx(i) − y(i,j)

)
θ

(j)
k + λx

(i)
k


16.2 Find Related Items

• To find the 5 movies most similar to x(i), find the five j’s such that ||x(i)−
x(j)|| are the smallest.

16.3 Mean Normalization
• Let’s say a new user joins and (s)he has not made any ratings. How can
we predict/recommend the movie to him/her?

• If we use the above algorithm, it will simply predict 0 (the only term in
the sum will be the regularization term).

• So an alternative approach is to normalize all your movie ratings around
the mean—simply take the mean of all the ratings for a given movie, and
subtract it from all the ratings to get a mean of zero.

• Train everything on this data. Make a prediction as normal but add the
mean back in at the end.

• Now for that user, the recommended ratings will be the mean of all the
other ratings.

• {Does this not mean that, since the mean changes each time a movie is
rated, the training has to occur repeatedly?}

• {Actually, even without mean normalization, would we have to retrain
often?}

17 Large Datasets

17.1 Stochastic Gradient
• See notes in earlier chapter.

• Algorithm:

47

1. Shuffle your data set.

2. For each x(i), update Θ (i.e. loop over all your inputs).

3. Repeat (1− 10×)

• The goal was to avoid the summation over m in each iteration. But it
seems like I’m doing that anyway! The claim is that this will have faster
convergence.

• Approaches the minimum in a circuitous route (it may backtrack). It will
likely hover near the minimum (i.e. not quite converge to it).

17.1.1 Convergence of Stochastic Gradient

• Plot the cost after every, say, 1000 iterations (before updating Θ).

• Normally α is held constant. If you want it to converge to a solution,
slowly decrease α over "time". As an example: α = a

b+k where a, b are
constants and k is the current iteration number.

– This is not normally done.

17.2 Mini-Batch Gradient Descent
• Stochastic uses one example per iteration. Batch uses all examples per
iteration. Mini-batch is in between—it uses b examples per iteration. It
is called the mini-batch size.

• Typical range is b = 2− 100. 10 is typical.

• θj := θj − α 1
b

∑i+b−1
k=i

(
hΘ(x(k))− y(k)

)
x

(k)
j

– Then increase i by b.

• The benefit over stochastic gradient descent is that it allows for vectoriza-
tion/parallelization.

17.3 Online Learning
Say you have a web site and a user comes to your site and you collect some
information about him and, say, classify him in some way. How do you handle
this?

Very simple:

1. Get (x, y) corresponding to the user.

2. Update Θ as you normally would.

Done. No need to store your data. Assuming you keep getting people visiting
your site, you have potentially limitless data.

48

	Linear Regression
	Definitions
	Gradient Descent
	Alternatives to Gradient Descent
	Gradient Checking
	Matrix Derivatives
	Least Squares Revisited
	Probabilistic Interpretaion
	Locally Weighted Linear Regression
	Random Tips

	Classification
	Logistic Regression
	The Perceptron Learning Algorithm
	Another way to maximize the maximum likelihood function
	Classifying into k Categories

	Generalized Linear Models
	The Exponential Family
	Constructing GLMs

	The Problem of Overfitting
	Addressing overfitting
	Regularization
	Regularized Linear Regression
	Regularized Logistic Regression

	Generative Learning Algorithms
	The Multivariate Normal Distribution
	Gaussian Discriminant Analysis
	Naive Bayes

	Support Vector Machines
	Notation
	Functional and Geometric Margins
	The Optimal Margin Classifier
	Lagrange Duality
	Optimal Margin Classifiers
	Kernels
	Regularization and the non-separable Case
	The Sequential Minimal Optimization (SMO) Algorithm
	SVM & Kernel Method Examples

	Support Vector Machines—Coursera Treatment
	Kernels
	Choice of Kernel
	Logistic Regression vs SVM

	Neural Networks
	Multiclass Classification
	Cost Function
	Backpropagation Algorithm
	Putting All The Pieces Together

	Learning Theory
	Definitions
	Finite H
	Infinite H

	Model Selection
	Cross Validation
	Feature Selection
	Bayesian Statistics and Regularization

	The Perceptron and Large Margin Classifiers
	The k-means Clustering Algorithm
	Mixtures of Gaussians and the EM Algorithm
	Dimensionality Reduction
	Motivation
	Principal Component Analysis
	Principal Component Analysis Algorithm

	Anomaly Detection
	Algorithm
	Evaluating the Algorithm:
	Anomaly Detection vs Supervised Learning Algorithm
	Choosing What Features to Use
	Using the Multivariate Gaussian Distribution

	Recommender Systems
	Collaborative Filtering
	Find Related Items
	Mean Normalization

	Large Datasets
	Stochastic Gradient
	Mini-Batch Gradient Descent
	Online Learning

